Did Intel announce the iPhone 5 (GSM) radio chip?

Most of the “conventional wisdom” currently going around is that Apple has lock, stock and barrel moved to the Qualcomm baseband (RF – the cellular part) processor for all future iPhones. If that does turn out to be the case, then you can just ignore the rest of this post.

However I’m inclined to believe Apple may not yet unify the GSM and CDMA iPhones, especially given the size footprint of the Qualcomm CDMA/EVDO/HSPA+ chipset inside the iPhone 4 (CDMA). Without a significant redesign Apple just cant put all those chips necessary for a dual-mode phone, plus the Micro-SIM slot, plus the Qualcomm chip inside on that tiny PCB. Given recent rumors, the next iPhone isn’t expected to be a big overhaul.Anandtech was smart to point out the space limitation…

Though the baseband supports dual mode operation, upon looking at more of the CDMA iPhone disassembled, it’s quickly apparent why that isn’t put into use. There simply isn’t space for the required power amps as the mainboard is organized right now. Though there’s definitely space picked up from losing the SIM slot (which, as an aside, explains why Apple seemed keen on losing SIMs entirely – it’s starting to become a huge chunk of real-estate), but the MDM6600 is simply larger than the Infineon X-Gold 618. Unless you can get in there and add both the signaling for the SIM and necessary RF components, there’s no way the CDMA iPhone is becoming dual-mode anytime soon.

To make a dual-mode phone that would work on both AT&T and Verizon, you’d need 3 more RF amps, a 10-way switch, and numerous other parts (along with paying for both CDMA and GSM/HSPA licensing fees to the respective patent owners for every phone, an extra cost of up to $20/unit). While keeping the phones separate means paying less money to patent holders for technology the user may never use (how often would an AT&T customer use the CDMA parts of the phone – I cant think of any exclusively CDMA countries, even South Korea has a 3G GSM network).

So in comes Intel’s (neé Infineon), the provider of the RF baseband chips in the iPhone, 3G, 3GS and 4-GSM models with a new 3G/HSPA+ RF baseband chip. The specifications are impressive – 21Mb/s down and 11.5Mb/s up, which translates roughly to 5-6Mb/s down and 2.5Mb/s up in the real world on a good network. But more importantly there are two features Intel is really pushing about the chip that make this seem to be custom tailored for Apple.

First is the power efficiency. The previous chip (in the 4-GSM model phones) was built at 65nm, and the new chip is 40nm. To those that understand semiconductor fabrication technology know those numbers mean a huge leap in terms of power consumption – for the same workload the new chip may consume as much as 65% less powerthan the previous generation chip, since the fabrication technology has gone down 1.5 “nodes”. This is something Apple, in their never ending quest for battery life and usability, could benefit tremendously from. I’d estimate it buys an extra 30% on 3G talk time, and 15% on 3G web, bringing Apple’s stated totals to 9 hrs 3G talk and 7 hrs 3G web.

Second is the package size. Intel is pushing hard that the chip’s footprint is very small, which is appropriate for Apple’s notoriously small circuit boards. The goal to make the chip small allows Apple to make the circuit board smaller, and make the battery larger (or just the same volume, just thinner). Making the package smaller could also accommodate larger/alternate amps and radios, to possibly accommodate other GSM bands (perhaps even T-Mobile’s AWS band?).

Anyways, just some wishful speculation. To me its always made sense that Apple not unify their product line at the iPhone 5 from a cost perspective. We’ll see the first unified phones when we move to LTE in 2012, and if Apple can get their way, no more SIM card either.

Why bother with a 3G iPad?

Recently, it was announced that an updated iPhone OS will have support for Wifi tethering. Verizon is offering unlimited data packages, while AT&T announced today that they’ll offer an extra 2GB of monthly data transfer on the new iPhone Wifi tethering plans.

So if you happen to have an iPhone, why bother with a 3G iPad, when the Wifi version will be enough? Paying $25 twice for 2GB each of iPhone data and iPad data is $50, while for $5 less, plus the $130 you’ll save on the initial purchase, you can get 4GB of data to share between the two (and between any laptops you might have).

There are certainly some downsides – you’ll have to turn on and turn off the Wifi hotspot on the iPhone to conserve battery, and you risk running your iPhone’s battery down quicker. Gruber stated that in his testing on a Verizon iPhone, the hotspot feature used 5% every 20 mintues of hotspot use, or 15% per hour. The iPad’s battery is larger and is better suited to running for longer (and using the cellular data connection more frequently), however since you cant pool your data connections together (yet) and the 3G option is rather expensive ($130 for generation 1 iPads) you’re stuck using the iPhone as the hotspot. The only thing missing is a hardware hack to allow the iPad to recharge the iPhone so that the iPhone can last longer with tethering enabled.

Brief thought…

In light of me turning 30 this week…

And while conventional wisdom may offer the dubious claim that your teenage years and early 20s are the “best of your life,” woe be onto to them who confuse one chapter of their life for the whole of it, for they will be doomed to repeat it in a series of cycles whose returns are ever-diminishing, and thus hold themselves back from telling any other story.

In the end, adulthood isn’t a single decision you make, but a long series of decisions you make every day for the rest of your life. And the best reason to grow up isn’t because it is expected or required, but because it means moving forwards. Because while it may also involve incredibly tedious things like mortgages and car payments, growing up is a natural function of seeking a life that is more dynamic than static, of choosing ambition and hope over avoidance and fear, of wanting to know who you’re going to be and not just who you were, even if that takes you away from the things you used to love.

Past Predictions (from 5 years ago)…

With the news that Plastic is shutting down next month, I went through my list of comments and found this gem. Not bad.

2006 Technology Predictions:

1. Mac computers will see a surge in sales as models switch to Intel processors. This is in part due to the ability to run Windows applications easily from Mac OS with only a little performance hit. Customers who ordered their new Macs will be disappointed by the wait times for their new hardware to arrive, but The Steve’s RDF will make it all better. Apple’s shares split as they hit 100 towards the end of the year. [This just about happened! AAPL was between $85-90, though the shares still haven’t split]

2. Web 2.0 hype will fade towards the end of the year, however the underlying technology will still hang around and provide neat new innovations. [Web 2.0 hype ended as soon as Apple introduced the iPhone in January 2007, but AJAX and all the useful Javascript frameworks we take for granted today came out 2006]

3. TiVo will have a comeback as they fight for fair-use (not having to buy the same content in DVD, UMD and iPod video just to have it in all those places) and unveil a new Hi-Def TiVo with new integrated features like Podcasting, IPTV (certain codecs — perhaps MPEG 4 AVC/H264), chat and games (better integration than we see in HME now). [TiVo never fought much for fair-use, but we did get an HD TiVo in September 2006 – and features like Podcasting did come to the HD and SD units)

4. HDTV penetration continues — Cheap CRT RPTVs dominate the low end of the market, while DLPs take over the mainstream and plasmas and LCDs fight over the high end 50″+ thin-and-flat segment. 1080P becomes standard for TVs> 50″ and 720P below 50″, even through there is no source material at 1080P. [This sort of happened, DLPs had their time in 2005-2007 before flat screens really came to dominate the market]

5. MS Vista debuts at the end of the year to mixed reviews. We waited 5 years for this? With all the main “innovative” features ripped out, all we end up with is XP Release 2 (from the users perspective). However the architecture underneath is more solid and stable, and the successor to Vista is announced and might actually contian most, if not all the missing features. [HAH! I was soooo right about Vista being a disappointment, and Windows 7 actually being the refined, complete Vista]

6. Google continues its dominance. Products like GMail start to exit beta and feature more ads. Some products like Orkut are put out to pasture. [Orkut might still be alive but no one in the US uses it, it got taken over by rowdy Brazilians]

7. PS3 Delayed to summer, however Nintendo’s Revolution is the hit of the fall, at only $250 and the ability to play the entire back catalog of first-party Nintendo games (Mario, Zelda, Metroid, etc) for the NES, SNES, N64 and GC available on-demand via a download for all but GC (GC discs will play in the Revolution). For $25/mo you can play unlimited games. I’m not sure about this part: first-party Sega games along with some third party games for the Master System, Genesis and 32X are available as well. (woooo Phantasy Star!) [The PS3 was delayed until the fall, longer than I had expected, and the Nintendo Wii has sold the most units out of it, the 360, and PS3; also I have played Phantasy Star on the Wii and lost a lot of time to it]

Future Visions Pt.1

As CES goes on in town this weekend, seeing all the new products and technologies introduced gives me a few ideas on what might be possible in 10 or 15 years. I’ll cover a few of those ideas here over the next few days.

Idea 1: The idea of a personal car is outmoded

One of the bigger announcements at CES is Ford’s all-electric Focus. While this is good for now, the future of transportation isn’t limited to just personal vehicles.

Imagine Sunday night in the year 2030. You’ve got plans laid out for work this week. You get up each day at to be at work by 7, and you leave work at 5 at night. You share your weeks calendar with the AUTOMAT car scheduling system allowing them to know what time you have to be at work, any errands you have to run, and even suggesting you stop by the flower shop for your wife since your anniversary is Thursday.

The massive computers that run the system tell you what time a car will be by your house to pick you up in the morning each day. Yes, the car will pick you up. Using an advanced version of Google’s self-driving car technology, the cars will be able to autonomously drive you around the city, including from their nightly storage and recharge areas (possibly mall or supermarket parking lots) to your home. Think of it like car sharing on steriods. You can even get a discount for carpooling with friends and co-workers.

So what could cars look like if they’re going to be almost crash-proof and typically carrying only one occupant? Far lighter and cheaper than they can be made today. This, compounded with advanced battery technologies, will allow cars to drive hundreds of miles all day at higher speeds without having to pause for a recharge.

You could even sign your children up at age 8. No more needing to take your kids to soccer practice, since they can take themselves in one of these vehicles. They’ll have their own smartphone to control when they need to be picked up if practice ends early.

As cars become more connected, monitoring the cars performance and their occupants will become trivial. Computer systems could easily pinpoint malfunctioning cars before they break down and direct them to service or have replacement cars to your location quickly. The system could even notify you if you accidentally leave your gym bag or cell phone in the car. The vehicle would also have a self-defense system – it could determine if a human driven car was at fault in an accident, or capture the license plate of someone who may have hit the car in the parking lot.

Out of town trips? No big deal. Larger vehicles with cargo space for luggage are also available. Higher speeds would also be available on the highway to get you to your destination faster. Long day trips or multiple day trips might require users to swap cars (or stop to swap batteries) if they want to drive uninterrupted to their destination without stopping overnight at a hotel to sleep.

Larger societal implications

  • Reductions in number of auto fatalities. There still might be many caused by outside circumstances – pedestrians and cyclists jumping out in front of cars without looking, human driven cars, etc.
  • Taxi drivers and chauffeurs are put out of work – no one needs a human to drive a car anymore
  • Auto body and car repair shops see massive reductions in the amount of work they have due to fewer moving parts and more proactive maintenance schedules
  • Increased mobility for kids – ages 8 to 16 can now get around without relying on their parents (though safeguards in the system will be set to require parent permission to reserve a car)
  • Reduced number of cars produced every year because of vehicle sharing – how does this impact manufacturing?
  • Less differentiation between car manufacturers – people still might want to spend the money to reserve a Lexus or BMW but most of the safety concerns of larger and more expensive vehicles will have gone by the wayside
  • Increased patronage of bars – if you don’t worry about driving drunk, you can drink more ;)

So thats really just the first idea I’ve had taking up room in my head as I’ve read all the news pouring out of CES. Hopefully I can put together a few more articles the next few days.

Verizon iPhone almost here…

Verizon Press Conference at 11AM ET/8AM PT. I’m surprised Apple isn’t announcing it, but then again what is there to announce? To the consumer, the Verizon iPhone will function the same as on AT&T. No new features are being added. If anything, the big news might be on Verizon’s side – if they’ve upgraded their network to CDMA rev B to allow for simultaneous data+voice, along with carrier bonding to allow faster top speeds (from 1.3 to 4.9Mb/s).

Jumped ship to Google Apps 3 mo. ago, haven’t looked back…

For the longest time (as in, since around 2001) I’ve been hosting my own mail server and web server. I tried to make it a number of things – blog host, email server, place to access documents, data, etc. The only thing it still does today is host this blog.

I’ve embraced the cloud.

Three months ago I switched off my mailserver and moved it to Google Apps hosted service. I only use 4-5 email accounts, and the service is free to those with less than 25 accounts (50 if you’re a non-profit agency). I also moved the email system for this blog, as well as the email system for a non-profit group I volunteer for over to Google Apps as well.

Things have been just about perfect.

Not only do I get all the email hosting services, I get the Gmail web interface, I get syncing to my phone via Microsoft Exchange protocol (better than IMAP or POP3), HTTPS and all the robustness of Google’s incredibly high uptime.

Beyond just email, I also get Calendaring (also through MS Exchange protocol), Google Docs, and soon I’ll be able to roll up all the other Google services I use (Google Reader, etc) into the same account so I don’t have to try and have 3-4 different Google accounts logged in at once – yes you can do it but its prone to errors.

The app with the biggest impact so far is Docs. From any computer anywhere in the world (almost) I can access my library of documents over HTTPS (so my IT department cant see what I write) and just create a word processing document and write down all my ideas, or create a spreadsheet to do some calculations for something for me to refer to later. All the functionality I need is there to write simple documents (nee screeds) and spreadsheets – page/cell formatting, printing to PDF, etc.

Looking back, I have a hard time thinking about how I did this before. If I had an idea while I was at work, I’d have to write it down on my iPhone’s notes app, and then hope I remembered later to open the notes app back and and look at it. Now I can just create a document, write it down, and then when I get home and open up my web browser, the document is there, staring me in the face.

And the best part is that its free. Thanks Google!

Will you ever want to buy an electric car?

Note this is not an attack on electric cars – I think cars like the Chevy Volt and Nissan Leaf are the future. We cant live on oil forever, especially not with China and India adding two billion people to the working class over the next 75 years.

But my question is more a question about innovation. If Li-Ion batteries improve 8-10% per year, do you want to invest anywhere between $8,000 and $15,000 for a battery in the first few years of this decade? Even after prices level out, will a 40% increase in range (or a similar decrease in cost) be enough to keep you from buying the battery outright? What about the residual value of the battery after 8-10 years of (ab)use in a vehicle.

The first premise is that batteries improve 8% per year. This appears to be close to constant (until major step-changes like changing chemistry from NiMH to Li-Ion), and has been noted by Elon Musk of Tesla Motors.

The next premise is that if batteries are constantly being improved, and will continue to improve until at least 2030 (around the time we hit the theoretical limits for Li-Ion), that constant innovation will push prices on older batteries down, in the same way when Intel produces their fastest chip and put it in the top of their price list, everything else gets knocked down a pricing level. Beyond that, as production ramps up, per unit costs will come down. This is a double whammy on battery prices – as such A123 representatives have speculated on end-of-2012 pricing of $400/kWh from about $750 in mid 2010 (a kWh will propel a Prius-like car approximately 4 miles, and a large Ford Explorer-like vehicle about 2.75 miles.

The argument to buy says its bad to lease anything because you don’t end up owning anything. At the end of the five year financing, you own the car and battery. But over time and with each recharge, batteries lose capacity, and that could be exacerbated depending on the climate you’re in, how you treated it (faster recharge = more degradation), if it is liquid or air cooled, etc. The return-on-investment calculations vary depending on your driving patterns, so you need to make sure that an electric car is right for you. If you lose your job or change jobs and your driving patterns change significantly, you might find yourself not having a positive return-on-investment compared to buying a traditional gasoline or regular hybrid car (you might end up not driving enough or driving too much per day).

The leasing argument is much more interesting (and complicated). The reason to lease is that the battery has a fairly fixed lifespan – 1,500 cycles or whatever the cell manufacturer promises. However, even after the batteries might no longer be suitable for driving (this would adversely affect the resale value of the car), they can still be used in applications like power grid storage and stabilization. This residual value of that battery could be 50-75% the price of a new battery. Returning the car after the lease and letting the dealer replace the battery, send it back to be remanufactured into something useful, and then installing a new (lighter, more powerful) battery and updating the car’s system for that battery is an easier course for the consumer instead of having to do that and pay for it before trying to sell it, or take a hit on trade-in value.

Leasing can also bring down the per-month costs – instead of paying for the entire car, and then getting a substantial bump in the trade-in value for the battery, the user (for the most part) only pays for the depreciation of the car during its use. As seen in both the Chevy Volt and the Nissan Leaf, the price for the lease (estimated $350/mo) is much less than what you would expect on cars costing between $27,000-33,000 after tax incentives.

Another non-conventional argument for leasing is the increasing rate of technology invading vehicles. From in-car entertainment, in-car communication (think: replying to text messages verbally), to safety features. While I don’t have a problem buying a new $300 iPhone every year, I certainly will not buy a new car with such frequency because its in-car entertainment is better than the car I currently have (software upgrades aren’t likely to help much in terms of adding new features – my 2009 Ford Escape hasn’t had any new features added to its in-car computer systems since I bought it). By 2015, most cars should have anti-collision systems to stop the car before it rear-ends the car in front of it (its already on some high-end cars today). By 2025 cars will be able to drive themselves down the highway and navigate to the exit, and even around some roads. It wont be fully autonomous but it will take care of 90% of your driving.

One of the ideas being tossed around is a hybrid – buying the car (shell, interior, electric motors, transmission, etc) and leasing the battery, often in conjunction with battery quick-swapping systems instead of dealing with lengthly recharge times – while battery technology might increase 8% a year, there is no way to increase recharging times for a given level of safety and source electrical systems: recharging a battery after 3-4 hours or 250 miles of all-electric highway driving will take 11 hours at 240V/30A (the most you’ll be able to get at home), and 5.5 hours at 240V/70A (the most you’ll be able to get in a commercial environment – e.g. an office building or parking lot). Even a 480V DC 50kW fast-charge circuit will still take 90 minutes. The only way to rapidly recharge the batteries is to have parallel 50kW fast charging systems hooked to one car, however fast-charging batteries can advance their degradation rate.

Its an interesting decision – there are clear pros to each choice, whether to buy, lease, or just buy the shell only and lease the battery. I would recommend that folks lease a first generation electric vehicle if they want to drive one, simply because of how much knowledge car companies and battery makers are going to learn the first few years about automotive batteries, and you don’t want to be stuck with an outmoded design or fatal flaw. By 2015 the prices of batteries will come down enough making the purchase of a second or third generation electric car reasonable if you carefully compare it to your driving habits compared to the vehicle’s EV characteristics.

Quick Thoughts on the new MacBook Air

Got the new 13″ MacBook Air today (which is impressive considering that I ordered it less than 24 hours ago and overnight shipping only cost $16). Loaded out with a 2.13GHz CPU, 4GB of RAM (not upgradable so I’m stuck with 4GB for the next 4-5 years of use), and a 256GB SSD.

Its an engineering marvel. The first MacBook Air was a revolution in that they finally had the idea to minimize the circuit board inside that houses the CPU, memory, etc. and then try and fit it in such a thin design. Though the UFO/Flying Saucer design was novel, it wasn’t until after Apple had more experience assembling things in tiny form factors (see iPad and iPhone 4circuit boards and how small they are compared to the rest of the interval volume being occupied by batteries).

Now that Apple had figured out how to cram everything you needed for a real laptop on a tiny circuit board, it was time to revise the housing and design of the MacBook Air. This was the result. And it was good.

The more (but not completely) square design allows for ports on both sides of the unit. Eliminating the door that was needed by the flying saucer bottom of the laptop. This adds a second USB port, display port out, and SD card reader on the 13″ version. I don’t have a need for the SD card slot, but I’m sure if I was more artsy or hip I’d have a 13MP DSLR and take moody photos and need to unload my SD card somewhat frequently into iPhoto.

When Apple says its the future of laptops they’re right. Intel’s next CPU has a graphics processor on the same piece of silicon. It wont be long before the large areas needed for two separate packages now can be combined into one package. With the advent of the Mac App Store, people will need less CDs and DVDs so optical drives start to disappear. Side note: I wouldn’t be surprised to find large vendors with lots of units (e.g. Microsoft, Adobe) looking to cut special deals with Apple ($99 copies of Microsoft Office Home Edition with Apple taking less than 30%, probably 20%), with the clear goal of going 100% digital, with the side effect of reducing piracy.

People don’t need anything much faster than a 2GHz Core 2 Duo for using the internet, especially if the video they are watching is decoded using the GPU (and less power than a CPU), which it is on the MacBook Air and other Mac laptops with the Nvidia 9400M and 320M chips. Sure if you’re running AutoCAD for the Mac, Photoshop, or Maya you’ll need more horsepower. But then I don’t think this is the laptop you want – you’ll fit better with the 15″ Macbook Pro.

Despite being a niche player in terms of market share, Apple never acts like a niche player. They target their hardware to the broadest possible audience in the segment they’re trying to address. Its why we don’t see Apple quad-core laptops, its why we don’t see more exotic high end video cards (I’m just glad we get decent video cards now – I still have my old Macbook with the GMA950 video, bleck!), its why there aren’t dual SSDs in RAID, etc.

The big push here seems to be the cloud. The problem is that Apple doesn’t have a lot of cloud services to offer – just MobileMe which isn’t that good – I feel like I get better service with my free Google Apps account – email, calendar, docs, etc, and I pay only $20/yr for my domain name for it.

There are only two downsides to this laptop.

First is an artifical restriction by Apple – to get the fastest CPU in the 11″ or 13″ class you have to pick the largest SSD. This isn’t much of a price increase on the 11″ model (64 to 128GB) but on the 13″ model, the jump to a 256GB SSD is a $300 price premium. My original desired model was the 13″ 2.13Ghz with a 128GB SSD. However Apple doesn’t make any in that configuration. So I had to fork over the $300 (ouch) to get that faster CPU. I’m tempted to find someone who has an 11″ model who wants to send me the $300 and their 128GB SSD and I’ll swap them the 256GB.

Higher resolution 13″ display. This might be a pro for most people (and I will list it below under the positive points), with my and my constantly deteriorating eye sight, I have to blow the font size on web pages up pretty high to read the screen on my old Macbook, and with the higher resolution screen I have to hit Command + one extra time.

While there were a number of upsides…

Stereo speakers. And I think Apple applied what they learned with the iPad to make the speakers on this sound decent. I think they’re doing a Bose-like setup (speaker -> small “acoustical chamber” -> output).

Higher resolution screen. As I mentioned above, its a negative for me but a positive for just about everyone else.

Solid state drive. During the keynote Steve said it was 2x as fast, but in reality its much faster than that for the types of disk operations your average application is going to be having compared to a 1.8″ or 2.5″ HDD.

Weight. The laptop is very light. You could carry one around in a backpack all day and not notice it.

Summary:

For the sufficiently techie looking for an ultraportable (11″) or small (13″) laptop, isn’t averse to paying for a Mac and going without an optical drive (or leeching from a Mac or Windows PC with one), and isn’t looking for a laptop to do heavy lifting, the MacBook Air is the new standard.

I can see the future in the MBA line – in two years when Intel is at 22nm and can put a much faster dual core CPU (in terms of performance, it wont be much faster in terms of GHz) and a built-in sufficiently fast GPU and SATA 6Gb/s with an even faster SSD, we’ll wonder why people hung on to those heavy, chunky laptops for so long. With another 15% of battery life (Li-Ion batteries improve about 8% per year) we’ll see another hour or so of battery life too.

Apple and the Verizon iPhone – 2011 Edition

So in the past week, the Apple rumorsphere has blown up again on more rumors about the CDMA iPhone. We’re all a bit tired of it and just want the phone to be out already.

The lead time on manufacturing chips is fairly large. It takes 12-16 weeks to fabricate a chip from silicon wafer to end product packaged and ready to be soldered onto a PCB. So 3-4 months. If you wanted them mid-December, you’d need to start production mid-September. If Apple wants a million chips, Qualcomm would need to get going now.

The biggest question now is not when is it released, but when is it announced. This is a calculated decision – more than even the decision to make a CDMA iPhone (which more or less falls into the DUH category given how Android is doing on Verizon and Apple doesn’t want to cede a perfectly viable piece of the market).

So how do they decide when to announce a Verizon iPhone?

1. Speculative Momentum. Every time a rumor comes out, it generates headlines. Announcing its going to be out for sure kills this cycle. You’ve only got so much to announce after you’ve made the initial announcement – things like the prices of data plans, any other terms and conditions, visual voicemail support, etc.

2. The Holiday Season. You probably want to announce it before December 1 for a corresponding January/February launch. People generally only get to update their phones every 2 years. If you announce 2-3 months prior to the release date, people will hold off long enough to get a suitable demand at launch. If you assume people get a new phone every 2 years, and Verizon has over 90M customers, that’s 3.75M customers every month that get a new phone. Let Christmas pass without an announcement, you’re likely to have some people frustrated that they just got a new phone and have to wait so long to get a Verizon iPhone. The counter-argument is that Apple is likely to be supply constrained for a while (first 3 months) and they’ll still sell every unit they make, so pumping up demand isn’t necessary.

3. FCC Certification. This used to be an issue, but isn’t as much anymore. Apple seems to have few problems these days with submitting devices to the FCC and requesting confidentiality. The only minor slip-up was the internals of the iPad ending up on a website the day before the launch in April, which isn’t that big of a deal since they would have been discovered the next day anyways. Assuming a device takes 2 months (maybe more around the holidays) then it would be submitted in late November for a late January launch.

4. An actual, factual deal – handshake and signatures. This is somewhat obvious, but they’ll need to actually come to terms and agree on things like phone price, feature set (from a phone/network perspective) and other things like what Verizon expects Apple to filter out of the App Store (network issues).

There is a lot of talk about unveiling it at CES since the CEO of Verizon has the keynote. I think that’s incredibly stupid speculation. It would be very un-Apple like for them to let a partner announce the phone. Even if Steve showed up, Apple would want to hold its own event. And January is probably too late – after the holidays and many purchasers are stuck for another year or two on other phones.

I’m inclined to pick a mid-November announcement. I think a September announcement with the refreshed iPods is possible, especially in light of Apple’s September 30th self-imposed deadline of figuring out what to do with the iPhone antenna issue. Apple could announce the iPhone 4-and-a-half in September for a January release with a physical fix, but who knows.

Bonus: If Verizon wanted to get a leg up on AT&T they’d do the WiFi hotspot thing.