Recently, AltairNano demonstrated their Lithium-Titanate batteries in a real world demo for Indianapolis Light and Power. They had two 1MW/250kWh units, and the batteries and equipment performed very well. The primary use for these large shipping-container sized units is for backing up inconsistent power sources like solar or wind. The units had a 90%+ efficiency returning the stored power to the grid.
But thats not what I’m talking about. Phoenix Motorcars are looking to use these batteries in their electric vehicles. And its these batteries that could change electric vehicles. Well, as soon as they get cheaper.
Lets start with the battery – Altairnano is offering a 35kW pack which would recharge in 10 minutes. However, the problem is that it requires a special off-board charging system. Still, if electric refueling stations had this charging system equipped, you could stop in and refuel and then be on your way in 10 minutes for another 100-120 miles.
Using an on-board charger, it would take approximately 5-6 hours per charge. This would be useful at a mall, or at the office, where you might have a few hours to charge.
This battery technology that does allow for quick charges requires a national standard for recharging capabilities. Having to roll up to a electric refueling station and hope they have a station for your car type is not ideal.
Next is the price – the vehicles they’re being offered in is $50,000-60,000. Compared to a Toyota Camry, the price of gas would have to skyrocket to $6 and even then the car would pay for itself in about 8-9 years.
The plus side is that it could be one of the last cars you buy. The battery will last at least 12 years – possibly longer. The battery would also hold residual value, since the battery is rumored to have up to a 9,000 cycle life – this translates to about 1 million miles! Even at 25,000 per year, thats 40 years. Now whether or not the rest of the battery pack and vehicle can last that long is unknown, but you could still harvest the individual cells and “recycle” the cells into a new battery for much cheaper than making new cells.
Speaking of cost, this is the biggest problem with the lithium-titanate batteries is that they cost around $1/Wh – so a 35kWh battery pack would be about $35,000. Standard lithium-ion batteries are about 50-60% of that price, though they don’t have the 10-minute recharge capability. Of course, its patented so there is only one manufacturer. So that might have an effect too.
Finally, a second smaller issue is the lower weight to energy ratio, meaning your car will have to lug around more weight in batteries (and therefore more batteries to go the same distance, etc) that it would otherwise.
So overall, it looks like a very suitable solution, however they would need to still need some more incremental battery improvements over the next few years to improve the weight situation, and maybe produce a slightly larger pack (50kW) to improve the range slightly (150 mi is really the minimum range to be useful).
The price issue issue can be mitigated somewhat if the battery were to be leased – you’d buy the vehicle sans battery for about $20,000 and pay a certain amount per year for the battery lease for as long as you own the car. This would allow the company to amortize the high cost of the battery over the lifetime of the unit – anywhere between 25 to 40 years. A $50,000 battery pack amortized over 40 years at 5% is $280/mo, or roughly 1,300 mi/mo at $4/gal and 20MPG (includes 12c/kWh power to drive that distance too). Though 1,300 mi/mo is 15,600 mi/yr, so you’ll have to drive a more than the average driver too (but that’s still less than 50 mi/day average).
Like just about every EV technology, the price will need to come down a good deal. But the biggest pros for this battery are the very large cycle count and extemely quick recharge time, and they could win out considering those are two of three biggest questions (range? recharge time? battery replacement?). With a 150 mile range and a 10-15 minute recharge time, it could win over those who are skeptical.